
1

a
c
l
t
v
t
f
c
p
m
p
r
t
c
g
e
p
s
t
s
m
t

t
M
2
T

J

Downlo
Y. G. Li
School of Engineering,

Cranfield University,
Bedford MK43 0AL, UK

Gas Turbine Performance and
Health Status Estimation Using
Adaptive Gas Path Analysis
In gas turbine operations, engine performance and health status are very important
information for engine operators. Such engine performance is normally represented by
engine airflow rate, compressor pressure ratios, compressor isentropic efficiencies, tur-
bine entry temperature, turbine isentropic efficiencies, etc., while the engine health status
is represented by compressor and turbine efficiency indices and flow capacity indices.
However, these crucial performance and health information cannot be directly measured
and therefore are not easily available. In this research, a novel Adaptive Gas Path
Analysis (Adaptive GPA) approach has been developed to estimate actual engine perfor-
mance and gas path component health status by using gas path measurements, such as
gas path pressures, temperatures, shaft rotational speeds, fuel flow rate, etc. Two steps
are included in the Adaptive GPA approach, the first step is the estimation of degraded
engine performance status by a novel application of a performance adaptation method,
and the second step is the estimation of engine health status at component level by using
a new diagnostic method introduced in this paper, based on the information obtained in
the first step. The developed Adaptive GPA approach has been tested in four test cases
where the performance and degradation of a model gas turbine engine similar to Rolls-
Royce aero engine Avon-300 have been analyzed. The case studies have shown that the
developed novel linear and nonlinear Adaptive GPA approaches can accurately and
quickly estimate the degraded engine performance and predict the degradation of major
engine gas path components with the existence of measurement noise. The test cases have
also shown that the calculation time required by the approach is short enough for its
potential online applications. �DOI: 10.1115/1.3159378�

Keywords: gas turbine engine, performance adaptation, gas path diagnostics, Adaptive
GPA
Introduction
With the development of thermodynamic modeling techniques

nd softwares, performance simulation of gas turbine engines be-
omes a quick and reliable tool for gas turbine engineers to ana-
yze engine performance. During gas turbine operation, however,
he deviation of gas turbine performance is indicated by the de-
iation of gas path measurements, such as gas path pressures,
emperatures, shaft rotational speeds, fuel flow rate, etc. Such per-
ormance deviation may be due to varying ambient and operating
onditions or engine performance degradations associated with
rolonged operation time and hostile operating environment. Nor-
ally, gas turbine engine performance is represented by engine

erformance parameters such as airflow rate, compressor pressure
atios, compressor isentropic efficiencies, turbine entry tempera-
ure, combustor combustion efficiency, turbine isentropic efficien-
ies, etc., while engine performance health is represented by en-
ine health parameters such as compressor and turbine isentropic
fficiency indices and flow capacity indices. Gas turbine engine
erformance and engine health status may not be directly mea-
ured and therefore are not easily visible to engine operators. In-
erpretation of the deviation of engine performance and health
tatus relative to its initial condition by using gas path perfor-
ance analysis techniques is very important to both engine opera-

ors and designers alike.
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Some techniques have been developed in the past in the field of
gas turbine engine performance matching or adaptation. Roth et
al. �1� introduced an optimization concept for an engine cycle
model matching and a minimum variance estimator algorithm �2�
for performance matching of a turbofan engine. Li et al. �3� intro-
duced an adaptation matrix manipulation method and genetic al-
gorithm adaptation method �4� for gas turbine design point per-
formance adaptation and successfully applied the methods to the
test data of an industrial gas turbine engine. Many gas path diag-
nostic methods have been developed in the past and the typical
ones are Gas Path Analysis �GPA� and its derivatives �5–12�, neu-
ral networks �13–15�, Bayesian belief networks �16�, genetic al-
gorithm �17–19�, fuzzy logic �20–22�, diagnostics using transient
measurements �23,24�, etc. More comprehensive reviews on gas
turbine gas path diagnostic techniques were given by Li �25�,
Singh �26�, and Jaw �27�.

In this paper, a novel gas turbine engine performance and health
status estimation approach, called Adaptive Gas Path Analysis
�Adaptive GPA�, has been developed. It uses the gas path mea-
surements as input information to estimate changing engine per-
formance and degraded health of major engine gas path compo-
nents. The developed approach is applied to a model gas turbine
engine similar to Rolls-Royce aero engine Avon-300 implanted
with different component degradations to test the effectiveness of
the approach. Analysis and conclusions are made accordingly.

2 Adaptive GPA
Engine performance status is represented by engine component

performance parameters, such as engine airflow rate, bypass ratio,
compressor pressure ratios, compressor isentropic efficiencies,

combustor combustion efficiency, turbine entry temperature, tur-

APRIL 2010, Vol. 132 / 041701-1
10 by ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



b
�
c
c
e
m
e
C
e
s
fl
a
w
a
t
p
d
a
a
T
a

A
t
o
f
d
g
p
S
h
a
fi
m
b
p
m
m
a

s
r
c

w
t
p
f
s
m
a
s
u

s
i
d
m
e
m

w
n
l
E

0

Downlo
ine isentropic efficiencies, thrust, specific fuel consumption
SFC�, etc. Engine performance degradation is represented by
omponent health parameters, i.e., compressor and turbine effi-
iency indices and flow capacity indices, and has great impact on
ngine component performance as well as whole engine perfor-
ance. The change in ambient condition, operating condition, and

ngine health has a significant impact on engine performance.
orrespondingly, the engine will reach a new thermodynamic
quilibrium condition, and gas path measurements of the engine,
uch as gas path pressures, temperatures, rotational speeds, fuel
ow rate, etc., will deviate from their original values. A novel
pproach has been developed and is named as Adaptive GPA
hose objective is to estimate the deviated engine performance

nd also determine the engine component degradation based on
he deviation of gas path measurements. Such Adaptive GPA ap-
roach is divided into two steps: The first step is the estimation of
eviated engine performance based on gas path measurements,
nd the second step is the estimation of engine degradation by
ssessing each component health condition at component level.
he following are the detailed descriptions of the Adaptive GPA
pproach.

2.1 Performance Status Estimation. As the first step of the
daptive GPA, the performance status estimation is to assess ac-

ual deviated engine performance due to engine degradation based
n measured gas path parameters. Although degraded engine per-
ormance is an off-design performance, once reaching a thermo-
ynamic equilibrium condition, an engine condition can be re-
arded as an artificial design point, and its performance can be
redicted using a design point performance adaptation method.
everal design point performance matching or adaptation methods
ave been developed in the past by different researchers �1–4�,
nd any one of them may be used to achieve the objective of the
rst step of the Adaptive GPA. The performance adaptation
ethod used in this study is the one reported in Ref. �3� developed

y the same author of this paper to estimate the actual engine
erformance at a degraded condition. Due to that such perfor-
ance estimation is an essential step toward the degradation esti-
ation in the second step, it is described briefly as follows to

ssist readers to understand the whole idea of the Adaptive GPA.
The thermodynamic relationship between engine gas path mea-

urement and engine component performance parameters can be
epresented with Eq. �1�, assuming that the ambient and operating
onditions are unchanged.

z� = h�x�� �1�

here z��RM is the gas path measurement parameter vector, M is
he number of measurement parameters, x� �RN is the component
erformance parameter vector, N is the number of component per-
ormance parameters, and h� � is a vector valued function repre-
enting engine thermodynamic relationship between x� and z�. If the
easurements are obtained at slightly different ambient and oper-

ting conditions, the measurement data should be corrected to the
ame ambient and operating conditions before the data can be
sed.

When an engine is clean �i.e., undegraded� and operates at a
pecified operating condition, the performance status of the engine
s denoted by subscript “0”. If the engine operates at a slightly
eviated condition due to engine degradation, the engine perfor-
ance represented with Eq. �1� can be expanded in a Taylor series

xpansion around condition 0, assuming that the engine perfor-
ance deviation is small,

z� = z�0 + � �h�x��
�x�

�
0

�x� − x�0� + HOT �2�

here HOT is the higher order terms of the expansion and can be
eglected when the performance deviation is small. Therefore, a
inearized gas turbine performance model can be expressed with

q. �3�.
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�z� = H · �x� �3�

The deviation of component performance parameters can be pre-
dicted by inverting the influence coefficient matrix �ICM� H to an
adaptation coefficient matrix �ACM� H−1, leading to Eq. �4� when
M =N.

�x� = H−1 · �z� �4�

Then the deviated engine performance status can be estimated
with Eq. �5�

x� = x�0 + �x� �5�

where x�0 is the original engine component performance parameter
vector, while �x� is the deviation of component performance pa-
rameter vector indicated by the change in gas path measurements
�z�. The method described above is called linear performance ad-
aptation approach.

To ensure a unique solution of performance adaptation, it is
required that the number of gas path measurement parameters M
should be no less than the number of component performance
parameters N, i.e.,

M � N �6�

If M �N, i.e., there are redundant measurement parameters com-
pared with the number of component performance parameters,
and Eq. �3� is overdetermined. When that happens, a pseudo-
inverse of H is

H# = �HTH�−1HT �7�

and the resulting solution x� =H#z� of Eq. �3� is the best in a least-
squares sense.

Due to that the engine performance may deviate nonlinearly
from its initial baseline condition because of nonlinear thermody-
namic behavior of engine performance, the linear performance
adaptation may not be able to provide accurate estimation of en-
gine performance deviation. Therefore an iterative process, a
Newton–Raphson method, is introduced to improve the accuracy
of the estimation where linear adaptation is applied iteratively
until a converged solution is obtained �11� �Fig. 1�. The above
method is called the nonlinear performance adaptation. Theoreti-
cally, the nonlinear performance adaptation has the potential to
provide better adaptation results than its linear partner.

The convergence of the nonlinear performance adaptation pro-
cess shown in Fig. 1 is declared when the predicted measurement
parameters are very close to the actual measurement parameters.
This criterion is shown in Eq. �8� where the root mean square
�rms� of the difference between the predicted and actual measure-

Fig. 1 Nonlinear Newton–Raphson method †11‡
ment parameters is smaller than � when convergence is declared:
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rms =
��

i=1

M

��zi,predicted − zi,actual�/zi,actual�2

M
� � �8�

here � is a very small number ��=0.001 in this study�.
Such performance status estimation method is fast in computa-

ion speed, and the accuracy of the estimation is mainly deter-
ined by the accuracy of the gas path measurements.
Although different gas turbine design point performance adap-

ation methods �1–4� have been developed, this is the first time
ne of these methods is introduced to estimate performance status
f a degraded engine. Such estimation method has the advantage
hat it does not need any component characteristic maps. As the
esult of the performance status estimation, the deviated engine
erformance due to engine degradation can be predicted.

2.2 Engine Health Status Estimation. Once the degraded
erformance of an engine is obtained, it can be compared with the
nitial engine performance when the engine was new. Such com-
arison can be done at a component level by comparing the oper-
ting point of each component on its characteristic map when the
omponent is degraded with the operating point on the same map
hen the component is not degraded. This leads to the estimation
f degradation of every major engine component of compressors,
ombustors, and turbines. To assist the analysis of gas turbine
egradation, it is assumed that the degraded characteristic maps of
ompressors, combustors, and turbines will keep more or less the
ame shape as their original maps, based on the fact that their
eometries do not change significantly after they are degraded.
he degradation of the components is represented by the shift of

he characteristic curves on the maps, and such shift is represented
y degradation indices to be discussed later.

The detailed procedure of such idea forms the second step of
he Adaptive GPA, and its detailed approach is the major contri-
ution of this paper described in detail as follows.

2.2.1 Compressor Degradation Estimation. Most open litera-
ure has only mentioned compressor degradation represented by
wo degradation parameters relevant to compressor isentropic ef-
ciency and flow capacity. However, the degradation of a com-
ressor may be described more realistically by the deviation of
hree degradation indices relevant to its isentropic efficiency, flow
apacity, and pressure ratio. A typical compressor characteristic
ap is shown in Fig. 2 where the relationship among four com-

ressor characteristic parameters, i.e., pressure ratio PRc, isentro-
ic efficiency �c, flow capacity FCc, and relative rotational speed

Fig. 2 Compressor characteristic map
Nc, at different operating conditions is represented. In the figure,
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solid lines represent the clean �i.e., undegraded� compressor map
while the dotted lines represent the degraded compressor map.
Three degradation indices �degradation scaling factors�, i.e., flow
capacity index SFc,FC, pressure ratio index SFc,PR, and isentropic
efficiency index SFc,eff, defined by Eqs. �9�–�11� may be used to
describe the degradation of a compressor, i.e., the shift of the
characteristic speed lines.

SFc,FC = FCc,deg/FCc �9�

SFc,PR = PRc,deg/PRc �10�

SFc,eff = �c,deg/�c �11�

where the degradation indices are defined as the ratios between
the values of degraded curves �dotted lines� and original ones
�solid lines� at corresponding points. These three degradation in-
dices are independent of each other.

At a degraded operating condition of an engine during its op-
eration, the compressor rotational speed can be measured while
the pressure ratio, mass flow rate, and isentropic efficiency can be
estimated by using the performance adaptation method described
in Sec. 2.1, and therefore the operating point of the compressor
can be located on the compressor map as B and B� that corre-
sponds to an operating point A and A� at the same rotational speed
when the engine is clean. It can be seen in Fig. 2 that points B and
B� may be at different locations on the same speed line if pressure
ratio and flow capacity degrade differently. In addition, multiple
solutions may be obtained if the determination of SFc,PR and
SFc,FC is made only based on the location of A, A�, B, and B�. To
avoid multiple solutions of the degradation analysis, it is assumed
that the flow capacity index is always the same as the pressure
ratio index, Eq. �12�, based on the fact that the degradation of
pressure ratio on engine performance has similar effect to that of
flow capacity degradation.

SFc,FC = SFc,PR �12�

Based on such assumption, only two degradation indices are used
to describe compressor degradation �while the pressure ratio index
becomes implicit�, and they are the flow capacity index SFc,FC
and the isentropic efficiency index SFc,eff. Point A can then be
located by the intersection between a line passing through B as
well as also satisfying Eq. �12� and the clean speed line at the
same rotational speed. Once point A is located, corresponding
point A� can be located easily on the �c−FCc map, where point
A� has the same rotational speed and the same mass flow rate as
that of point A. Therefore the pressure ratio, mass flow rate, and
isentropic efficiency at points A and A� can be determined. Due to
that the same degradation indices are applied to the whole com-
pressor map, any corresponding points on the map between clean
and degraded conditions can be used to calculate the degradation
indices. Therefore, the degradation indices representing the com-
pressor degradation can be estimated with Eqs. �9�–�11� by using
the values obtained at A, A�, B, and B�.

2.2.2 Combustor Degradation Estimation. Combustor degra-
dation can be represented with the degradation of combustor com-
bustion efficiency. Combustor combustion efficiency varies with
combustor load. A typical combustor characteristic map is shown
in Fig. 3 where the solid line represents the combustion efficiency
when combustor is clean �i.e., undegraded� while the dotted line
represents the combustion efficiency when combustor is degraded.
The combustor load is a function of the combustor inlet total
pressure �Pb� and temperature rise across combustor ��Tb�, Eq.
�13�,

combustor load = f�Pb,�Tb� �13�

A combustion efficiency index �combustion efficiency degradation
scaling factor� is introduced to represent the degradation of a com-

bustor and is shown in Eq. �14�.

APRIL 2010, Vol. 132 / 041701-3
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SFb,eff = �b,deg/�b �14�

here �b,deg is the combustion efficiency when the combustor is
egraded, and �b is the combustion efficiency when the combus-
or is clean.

To obtain combustion efficiency index SFb,eff, �b,deg is esti-
ated with the performance adaptation method described in Sec.

.1 when the engine is degraded. The operating point of the de-
raded combustor on a combustor characteristic map can be lo-
ated as point F, Fig. 3, based on the value of combustor load and
ctual combustion efficiency �b,deg. The corresponding operating
oint E for the same combustor load of clean combustor can be
ocated on the combustion efficiency curve for clean combustor
nd therefore the combustion efficiency �b can be obtained ac-
ordingly. Due to that the combustion efficiency index is applied
o the whole combustion characteristic map, the combustion effi-
iency index can be estimated with the value of combustion effi-
iency at points F and E by using Eq. �14�.

2.2.3 Turbine Degradation Estimation. Similar to the com-
ressor degradation representation, most open literature has only
entioned turbine degradation represented by two degradation pa-

ameters relevant to turbine isentropic efficiency and flow capac-
ty. However, the degradation of a turbine may be described more
ealistically by the deviation of three degradation indices relevant
o its isentropic efficiency, flow capacity, and enthalpy drop. A
ypical turbine characteristic map is shown in Fig. 4 where the
elationship among four turbine characteristic parameters, i.e.,
ow capacity, enthalpy drop, isentropic efficiency, and relative
otational speed, at different operating conditions is represented.
n the figure, the solid lines represent the clean �undegraded� tur-
ine characteristics while the dotted lines represent degraded char-
cteristics. Three degradation indices may be used to describe the
hift of the characteristic map due to turbine degradation, and they

Fig. 3 Combustor characteristic map
Fig. 4 Turbine characteristic map
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are flow capacity index SFt,FC, enthalpy drop index SFt,DH, and
isentropic efficiency index SFt,eff, Eqs. �15�–�17�.

SFt,FC = FCt,deg/FCt �15�

SFt,DH = DHt,deg/DHt �16�

SFt,eff = �t,deg/�t �17�
These three degradation indices are independent of each other.

At a degraded turbine operating condition, the turbine rotational
speed can be measured while the nondimensional gas flow rate
�FCt,deg�, enthalpy drop �DHt,deg�, and isentropic efficiency
��t,deg� can be estimated with the performance adaptation method
described in Sec. 2.1 and therefore the operating point of a turbine
on the turbine characteristic map can be located as D and D� that
corresponds to operating points C and C� for the clean turbine
with the same rotational speed. It can be seen in Fig. 4 that points
D and D� may be at different locations on the same speed line if
enthalpy drop and flow capacity degrade differently. In addition,
multiple solutions may be obtained if the determination of SFt,DH
and SFt,FC is made only based on the location of C, C�, D, and
D�. To avoid multiple solutions in degradation analysis, it is as-
sumed that the flow capacity index is inversely proportional to the
enthalpy drop index, Eq. �18�, based on the fact that the deviation
of flow capacity and enthalpy drop has opposite effect on engine
performance.

SFt,FC =
1

SFt,DH
�18�

Based on such assumption, only two degradation indices are used
to describe turbine degradation �while the enthalpy drop index
becomes implicit�, and they are flow capacity index SFt,FC and
isentropic efficiency index SFt,eff. Point C can then be located by
the intersection between a line passing through D as well as sat-
isfying Eq. �18� and the clean speed line with the same rotational
speed. Once point C is located, corresponding C� can be located
easily on the �t−DHt map where point C� has the same rotational
speed and the same enthalpy drop as that of point C. Therefore the
nondimensional gas flow rate �FCt�, enthalpy drop �DHt�, and
isentropic efficiency ��t� for clean turbine at point C and C� can
be determined. Due to that the same degradation indices are ap-
plied to the whole turbine characteristic map, the value of gas flow
rate, enthalpy drop, and isentropic efficiency at points C, C�, D,
and D� can be used to calculate the degradation indices by using
Eqs. �15�–�17�.

2.3 Linear and Nonlinear Adaptive GPA Procedures. A
typical procedure of the Adaptive GPA for the estimation of gas
turbine performance and health status is shown in Fig. 5. Due to
that either the linear or nonlinear performance adaptation method
may be used, the approach is called linear Adaptive GPA if the
linear performance adaptation is used and nonlinear Adaptive
GPA if the nonlinear performance adaptation is used.

In the Adaptive GPA procedure, an accurate performance model
should be created for the engine in concern at the beginning of
engine operation by using advanced thermodynamic performance
simulation software based on engine gas path measurements. The
performance of the engine at such condition is regarded as clean
engine performance, and the characteristic maps for compressors,
combustors, and turbines should be an accurate description of
their performance behaviors. During gas turbine engine operation,
engine gas path measurements are obtained continuously and used
to estimate engine performance deviation due to engine degrada-
tion by using performance adaptation techniques. In order that the
gas path measurements between clean and degraded conditions
are comparable, the measurements should be obtained at or cor-
rected to the same ambient and operating condition. Once the
actual engine performance status is determined, they are com-

pared with initial clean engine performance to estimate the degra-
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ation of compressors, combustors, and turbines by estimating the
egradation indices of these components with Eqs. �9�–�11� and
14�–�17�.

2.4 Implementation of Adaptive GPA Into PYTHIA. The de-
eloped Adaptive GPA approach has been implemented into
YTHIA �12�, a software developed in the School of Engineering at
ranfield University. PYTHIA is gas turbine performance simula-

ion and diagnostics software with a user friendly interface devel-
ped from TURBOMATCH �28�. PYTHIA provides a platform to build
erformance models for different gas turbine engines, to simulate
as path measurements when model engines operate at different
mbient and operating conditions and at different degradation
onditions, and to carry out different gas path diagnostic analyses.

Application and Analysis
To test the effectiveness of the developed Adaptive GPA ap-

roach, a representative model gas turbine engine similar to the
olls-Royce aero engine Avon-300 is chosen for the demonstra-

ion of the new approach. It is a single-shaft aero turbojet engine
ith one compressor, one combustor, and one compressor turbine.
hen the engine works at certain operating conditions, the turbine

ntry temperature is used as a control parameter and kept constant
s environmental condition changes and degradation happens. The
onfiguration of the model engine is illustrated in Fig. 6, and the
asic performance specifications of the engine are as follows �29�:

otal air flow rate 77.1 kg/s
otal pressure ratio 8.43
urbine entry temperature 1133 K
hrust 56.43 kN
FC 22.94 mg/N s

The performance model for the model engine is generated using
he software PYTHIA. The outputs of performance calculations are
ngine thrust, SFC, etc., together with the details of individual
omponent performance and of the thermodynamic parameters at
arious gas path stations within the engine.

ig. 5 Procedure of performance and health status estimation
sing Adaptive GPA
Fig. 6 Model gas turbine configuration
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To test the Adaptive GPA approach for performance and health
status estimation, it is assumed that the compressor, combustor,
and turbine of the model engine may be degraded. The degrada-
tion of the engine is simulated by changing the degradation indi-
ces of the components defined by Eqs. �9�–�11� and �14�–�17�.
Three engine degradation cases shown in Table 1 are used to test
the Adaptive GPA approach; the first two cases have single com-
ponent degradation only, and the third case has all three major
components �compressor, combustor, and turbine� degraded si-
multaneously. The first two cases intent to test the capability of
the Adaptive GPA in isolating a degraded component and quanti-
fying the degradation if only one component is degraded, while
the third case tries to test if the approach is able to accurately
predict the engine degradation if all of the major components are
degraded at the same time. Once the simulated gas path measure-
ments are collected, it is assumed that the implanted engine deg-
radation is unknown, and the simulated measurements are used as
the input to the Adaptive GPA system to test the system’s capa-
bility in assessing the changing performance and health status of
the engine.

The selected instrumentation set for the analysis of the model
engine is described in Table 2. It is assumed that all gas path
sensors are in good health �no measurement bias�. It is also as-
sumed that both clean and degraded engine performances are
measured at standard ISA �International Standard Atmosphere�
condition at sea level �Tamb=288.15 K and Pamb=1.0 atm�. If the
measurements are obtained at slightly different conditions, they
should be corrected to the standard ISO condition at sea level in
order that the data are comparable and can be used in the analysis.
In addition, it is assumed that the nozzle area is unchanged, and
the engine turbine entry temperature �TET� is kept constant at
1133 K by an engine control system when degradation happens.

The deviation of the engine gas path parameters indicates de-
graded engine performance. The simulated samples of those pa-
rameters are collected and regarded as simulated gas path mea-
surements. Due to that measurement noise is inevitable in gas
turbine measurements and has a negative impact on diagnostic
results, they are introduced in the simulated gas path measure-
ments to make the analysis more realistic. The simulated measure-

Table 1 Implanted degradation in three test cases

Implanted degradation
�%�

Component and health parameter Test case 1 Test case 2 Test case 3

Compressor
�SFc,eff �1.0 0 �1.0
�SFc,FC �3.0 0 �3.0

Combustor �SFb,eff 0 0 �2.0

Turbine
�SFt,eff 0 �1.0 �1.0
�SFt,FC 0 �3.0 �3.0

Table 2 Engine gas path instrumentation set

No. Symbols Parameters

1 Tamb �K� Ambient temperature
2 Pamb �atm� Ambient pressure
3 A �m2� Nozzle area
4 T3 �K� Compressor discharge total temperature
5 P3 �atm� Compressor discharge total pressure
6 T7 �K� Compressor turbine exit total temperature
7 P7 �atm� Compressor turbine exit total pressure
8 mf �kg/s� Fuel flow rate
9 CN Shaft rotational speed relative to its design value
APRIL 2010, Vol. 132 / 041701-5
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ent noise is random in quantity and follows the Gaussian distri-
ution. The maximum measurement noise for different gas path
easurable parameters is based on the information provided by
yson and Doel �30�.
To reduce the negative impact of measurement noise on perfor-
ance and diagnostic analyses, multiple gas path measurement

amples are obtained in the simulation, and a ten-point rolling
veraging is applied to get an averaged measurement sample be-
ore the measurements are fed into the Adaptive GPA. The math-
matical expression for the rolling averaging is shown in Eq. �19�.

z̄i =
1

P�
i=1

P

zi �19�

here zi is the gas path measurement samples, and P is the num-
er of samples �P=10 for ten-point rolling average�.

Measurement samples may be continuously obtained. The av-
raged sample using ten-point rolling average at a particular time
s the average of the last ten samples up to that moment. An
xample of simulated measurement samples after data averaging
nd their comparisons with the true values is shown in Fig. 7.

By implanting the different degradations shown in Table 1 into
he PYTHIA engine performance model, the gas path measurement
eviations �fault signatures� in the three test cases are shown in
ig. 8. It shows that these engine degradations result in different
ngine performance deviations indicated by different gas path
easurement deviations. To test the Adaptive GPA system, the gas

ath measurement deviations are input to the system, assuming
hat the degradation of the compressor, combustor, and turbine is
nknown to the system.

3.1 Test Cases 1 and 2. In this study, the simulated engine
erformance with implanted engine degradation is called “actual
erformance” while the predicted engine performance by using

Table 3 Prediction of actual engine performa
test case 1

Predicted degraded

Actual performance From linear Adap

Clean Degrade Value

ma 77.1 75.6 75.74
PRc 8.43 8.28 8.266
�c 0.898 0.886 0.885
�b 0.99 0.99 0.992
TET 1233 1233 1233.1
�t 0.914 0.914 0.9148

ig. 7 Comparisons between simulated measurement
amples and true values
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the Adaptive GPA based on gas path measurements is called “pre-
dicted performance.”

In these test cases, the two sets of measurement deviations of
test cases 1 and 2 shown in Fig. 8 are input to the Adaptive GPA
separately, and both the linear and nonlinear Adaptive GPAs are
used to estimate the deviated engine performance and predict the
corresponding engine degradation. The estimated deviated engine
performance represented by the deviated value of component per-
formance parameters and its comparison with the actual degraded
performance for the two test cases are shown in Tables 3 and 4.
Compared with the clean engine performance, TET is unchanged
due to that it is the engine handle and kept constant by engine
control system. In test case 1, engine airflow rate �ma�, compres-
sor pressure ratio �PRc�, and compressor turbine isentropic effi-
ciency ��c� are deviated from their clean value in the quantity
between �1.5% and �1.95% while the combustor combustion
efficiency ��b� and power turbine isentropic efficiency ��t� show
very little change. In test case 2, changes of �1.1%, 1.9%,
�1.1%, and �0.8% happen to engine air mass flow rate �ma�,
compressor pressure ratio �PRc�, compressor isentropic efficiency
��c�, and turbine isentropic efficiency ��t�, respectively, and al-
most no change to combustor combustion efficiency ��b�.

The comparison of prediction errors relative to the actual de-
graded performance in percentage is shown in Figs. 9 and 10
where the maximum error for the linear and nonlinear Adaptive
GPAs is about 0.2% in test case 1 and about 0.3% in test case 2.
It is also interesting to see that the estimated engine performance
status provided by both the linear and nonlinear Adaptive GPAs is
very close to each other, indicating that the linear approach is able
to provide almost the same results as its nonlinear partner al-
though it is normally believed that the nonlinear approach pro-
vides better results than its linear partner. This may be due to that
this model engine performance deviates almost linearly when deg-

using linear and nonlinear Adaptive GPAs in

ormance and its deviation from clean performance

GPA From nonlinear Adaptive GPA

iation
%� Value

Deviation
�%�

.768 75.72 �1.790

.945 8.266 �1.949

.492 0.885 �1.492
.152 0.991 0.133
.008 1233.1 0.008
0875 0.9145 0.0525

Fig. 8 Measurement deviations „i.e., fault signatures… in three
test cases „Tamb=288.15 K, Pamb=1 atm, and TET is constant…
nce

perf

tive

Dev
�

�1
�1
�1
0
0
0.
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adation happens and also due to that the measurement noise
akes the difference between the linear and nonlinear approaches

nvisible.
The engine component degradations in the two test cases pre-

icted by the linear and nonlinear Adaptive GPAs are shown in
igs. 11 and 12 where the predicted deviations of all health pa-
ameters �i.e., the degradation indices� are compared with the im-
lanted degradations. It can be seen that the predictions of the
egradations from both the linear and nonlinear approaches are
atisfactory, indicating that both the linear and nonlinear Adaptive
PAs are able to isolate and quantify engine component degrada-

ions satisfactorily. The maximum prediction error of degradation
s around 0.24%. It also shows that the smearing effect �predicted
egradation is distributed among all health parameters, although
ome of them are not really degraded�, normally seen in some
iagnostic approaches, is comparable to the level of measurement
oise ��0.4%� and is satisfactory even with the existence of mea-
urement noise.

3.2 Test Case 3. In test case 3, all major engine components
compressor, combustor, and turbine� are degraded simulta-

Table 4 Prediction of actual engine performa
test case 2

Predicted degraded

Actual performance From linear Adap

Clean Degrade Value

ma 77.1 76.376 76.255
PRc 8.43 8.591 8.586
�c 0.898 0.890 0.888
�b 0.99 0.99 0.989
TET 1233 1233 1234.5
�t 0.914 0.905 0.907

ig. 9 Comparison of linear and nonlinear Adaptive GPA er-
ors in test case 1

ig. 10 Comparison of linear and nonlinear Adaptive GPA er-

ors in test case 2
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neously, and the implanted degradation is shown in Table 1. The
deviation of engine performance and the corresponding measure-
ment deviation due to such degradation are shown in Fig. 8. Both
the linear and nonlinear Adaptive GPAs are applied to the test case
to predict both the deviated engine performance and engine
degradation.

Resulted from the first step of the Adaptive GPA, a comparison
among the actual clean and degraded engine performance, the
predicted degraded engine performance, and its deviations from
the clean performance is shown in Table 5. It can be seen that
deviation of around �2.7% in engine airflow rate �ma�, 0.2% in
compressor pressure ratio �PRc�, �2% in compressor isentropic
efficiency ��c�, �1.9% in combustor combustion efficiency ��b�,
and �0.7% in turbine isentropic efficiency ��t� are predicted
when TET is kept unchanged. Figure 13 shows that the maximum
prediction error for performance estimation from the linear ap-
proach is about 0.23% while the maximum error for the nonlinear
approach is about 0.2%. By looking at the prediction errors for all
the performance parameters, it can be seen that the prediction

using linear and nonlinear Adaptive GPAs in

ormance and its deviation from clean performance

GPA From nonlinear Adaptive GPA

iation
%� Value

Deviation
�%�

.096 76.237 �1.119
.854 8.586 1.854
.147 0.888 �1.118
.102 0.989 �0.118

.041 1234.5 0.041
.781 0.907 �0.751

Fig. 11 Predicted degradation with linear and nonlinear Adap-
tive GPAs in test case 1

Fig. 12 Predicted degradation with linear and nonlinear Adap-
nce
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tive GPAs in test case 2
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rrors from the nonlinear Adaptive GPA are generally similar to
hat from the linear one, Fig. 13, with the existence of measure-

ent noise.
In the second step of the Adaptive GPA, the engine component

egradation predicted by the linear and the nonlinear Adaptive
PA is shown in Fig. 14 where the predicted deviations of all
ealth parameters are compared with the implanted one. It can be
een that the predictions of the degradation from both the linear
nd nonlinear approaches are very satisfactory even when all three
ajor components are degraded simultaneously. The maximum

rediction error is below 0.3% for both the linear and nonlinear
pproaches.

3.3 Further Discussions. It can be seen in all the three test
ases that the maximum prediction errors for both the perfor-
ance status estimations �Figs. 9, 10, and 13� and degradation

redictions �Figs. 11, 12, and 14� are comparable. Theoretically,
he nonlinear approach has the potential to provide better results
han its linear partner. However, with the impact of measurement
oise, the slight difference in prediction accuracies is undermined.

Small smearing effect in the diagnostic results can be seen in

Table 5 Prediction of engine performance sta
test case 3

Predicted degraded

Actual performance From linear Adap

Clean Degrade Value

ma 77.1 74.97 75.03
PRc 8.43 8.447 8.449
�c 0.898 0.879 0.880
�b 0.99 0.97 0.972
TET 1233 1233 1232.6
�t 0.914 0.906 0.908

Fig. 13 Comparison of Adaptive GPA errors in test case 3

ig. 14 Predicted degradation with Adaptive GPA in test case
41701-8 / Vol. 132, APRIL 2010
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test cases 1 and 2 �Figs. 11 and 12� where the maximum smearing
effect is around �0.37%. This is also due to the negative impact
of measurement noise and numerical errors of the Adaptive GPA.

With the assumptions in diagnostic analysis that the flow capac-
ity index equals the pressure ratio index for a compressor and the
flow capacity index inversely equals the enthalpy drop index for a
turbine, reasonable unique solutions can be obtained from the
Adaptive GPA. Although such assumptions are not ideal solutions
in diagnostic analysis, it is better than not considering the pressure
ratio index for compressors and the enthalpy drop index for tur-
bines. However, such assumptions may be lifted with further in-
vestigation in this area in the future.

The computational speed of the Adaptive GPA is very fast. For
example, the computational time is only a fraction of a second to
get a solution with the linear Adaptive GPA and about 3 s to get a
solution with the nonlinear Adaptive GPA involving 14 iterations
by using a laptop computer with a 2.4 GHz dual processor. Such a
calculation speed provides the possibility that the Adaptive GPA
may be used in online applications. A convergence process for test
case 3 is shown in Fig. 15 where the rms defined in Eq. �8� varies
against the number of iterations.

4 Conclusions
In this study, a novel Adaptive GPA approach has been devel-

oped and presented. Such Adaptive GPA is a two step approach.
The first step is the novel application of a design point perfor-
mance adaptation to estimate actual performance status of a de-
graded engine and locate the operating point of each engine com-
ponent on its component characteristic map. The second step is a
novel approach introduced in this paper for gas turbine degrada-
tion analysis where the degradation analysis is done at a compo-
nent level by comparing the operating point of each component
when it is degraded with the operating point when it is not de-
graded on its characteristic map. Three degradation indices for a
compressor, one for a combustor, and three for a turbine are used

using linear and nonlinear Adaptive GPAs in

ormance and its deviation from clean performance

GPA From nonlinear Adaptive GPA

iation
%� Value

Deviation
�%�

.689 75.00 �2.719
.223 8.449 0.223
.971 0.881 �1.915
.838 0.972 �1.869

.049 1232.5 0.041
.700 0.908 �0.711

Fig. 15 Convergence process of nonlinear Adaptive GPA in
tus
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test case 3
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o represent different component degradations mathematically.
wo assumptions, one for compressors assuming the flow capacity

ndex being inversely equal to the pressure ratio index and the
ther for turbines assuming the flow capacity index being equal to
he enthalpy drop index, are introduced to get reasonable unique
olutions in the degradation analysis. Although such assumptions
re not an ideal solution in diagnostic analysis, it is better than not
onsidering the pressure ratio index and the enthalpy drop index.
he developed Adaptive GPA approach has been applied to a
odel aero gas turbine engine similar to the Rolls-Royce Avon-

00 implemented with degradations in three test cases—test cases
and 2 with single component degradations and test case 3 with

ll three major components �compressor, combustor, and turbine�
egraded simultaneously with the existence of measurement noise
o test the effectiveness of the approach. The results show that
oth the linear and nonlinear Adaptive GPAs have the capability
o accurately predict engine performance status and engine degra-
ation, and both approaches provide results with comparable ac-
uracy with the existence of measurement noise. The application
f the Adaptive GPA shows that the new approach has a great
otential to be used in gas turbine operations to provide engine
perators with the information of changing engine performance
nd health status based on gas path measurements. The computa-
ional speed of the approach is very fast, a fraction of second for
he linear approach and few seconds for the nonlinear approach
sing a typical modern laptop computer, so it provides the possi-
ility of its online applications.

omenclature
A � nozzle cross area �m2�

CN � shaft rotational speed relative to its design
value �%�

DH � enthalpy drop
FC � flow capacity

H � Influence Coefficient Matrix �ICM�
M � number of measurement parameters
ma � engine air flow rate �kg/s�
mf � fuel flow rate �kg/s�
N � number of engine component parameters
P � total pressure �atm�

PR � pressure ratio
SF � degradation index or degradation scaling factor

SFC � specific fuel consumption �mg/N s�
T � total temperature �K�

TET � turbine entry temperature �K�
x� � engine component performance parameter

vector
z� � engine gas path measurement parameter vector

� � deviation
� � convergence threshold
� � efficiency

ubscripts
amb � ambient

b � combustor
c � compressor

DH � enthalpy drop
deg � degraded condition
eff � isentropic efficiency
FC � flow capacity
PR � pressure ratio

t � turbine
0 � clean �or undegraded� condition
1 � engine inlet
3 � compressor exit
7 � compressor turbine exit
# � pseudo-inverse
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